
I
I
1
I
I
I
I
I

SAND REPORT
SAND2003-0887
unlimited Release

Controlatron IY Tube Test Suite
Software Manand C olatron Interlock

P

Nuclear SecurRy Adm Centrad DE-ACO4-94-AL85000.

er dissemination unlimited.
#?. ,,

bndia National laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energv by
Sandia Corporation.

NOTICE: This report was prepared BS an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, pmduct, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
US. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, Th' 3783 1

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@,adonis.osti - .gov
Online ordering: httu://www.doe.eovlbrid~

Available to the public from
US. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworId. oov
Online order: htt~://www.ntis.sov/helr/ordermethods.asu?loc=7~-O#online

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SAND2003-0887
Unlimited Release

Printed March 2003

Controlatron Neutron Tube
Test Suite Software Manual

Controlatron Interlock Control (V2.2)

William P. Noel and Debra L. Wallace
Neutron Tube Design Department

Monica Martinez
Neutron Generator Design Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 871 85-0516

Robert J. Hertrich and Keith Barrett
Primecore Systems, Inc.

Albuquerque, New Mexico

Abstract

The Controlatron Software Suite is a custom built application to perform automated
testing of Controlatron neutron tubes. The software package was designed to allow users
to design tests and to run a series of test suites on a tube. The data is output to ASCII
files of a pre-defined format for data analysis and viewing with the Controlatron Data
Viewer Application. This manual discusses the operation of the Controlatron Interlock
Control (CIC) Module from the Controlatron Neutron Tube Test Suite of Software.

3

Revision History

Rev # Author
1 .o William Noel
1.2 William Noel

I
I

Date Description
10/08/01 Original Layout and Formatting
3/16/02 Rough Draft Revision 3Editing\Format to

2.0
Monica Martinez SNL SAND specifications
William Noel 3/20/02 Final Revision

Figure 1. Revision History Table

Robert J. Hertrich
Primecore Systems, Inc.

8421 Osuna Rd. NE, Suite C-1
Albuquerque, New Mexico 871 11

Keith Barrett
Primecore Systems, Inc.

842 1 Osuna Rd. NE, Suite C- 1
Albuquerque, New Mexico 871 1 1

William P. Noel, EMT-B, RN
Neutron Tube Design Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 871 85-05 16

Debra L. Wallace
Neutron Tube Design Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 871 85-05 16

Monica L. Martinez
Neutron Generator Design Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87 185-05 16

4

I
I

I
I
I
‘I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Contents

1 . Controlatron Software Overview .. 13
1.1
1.2
1.3
1.4
1.5
1.6

1.7
1.8
1.9
1.10
1.11
1.12
1.13

Overview ... 13
Software Specifications .. 13
System Administrators .. 14
Hardware Considerations .. 14
Configuring the Interlock System ... 14
Message Manager Architecture Description and Tutorial .. 18
1.6.1 What is a state machine? ... 19

. .

1.6.2 What is a ‘State?’ .. 19
1.6.3 What is the Message Manager? ... 20

Overall Architecture of a Message Manager Based Program 23

Advantages of a State Machine in General ... 24
Advantages of the Message Manager ... 24
Disadvantages of the Message Manager ... 25

Queued State Machine Architecture Description and Tutorial 26
1.13.1 First of all, what is a state machine? ... 27
1.13.2 What is a queued state machine? ... 27
1.13.3 How do I add events to the queue? .. 27

1.13.5 What can I do in a “State?” ... 29
1.13.6 Advantages of a State Machine ... 29

Remote Message Manager .. 24

Object Orientation Using the Message Manager .. 25

1.13.4 Timed Events ... 28

2 . Controlatron Interlock Control System .. 31
2.1

2.2

2.3

CIC Top Level.vi .. 31
2.1.1 Connector Pane ... 31
2.1.2 Front Panel .. 31
2.1.3 Controls and Indicators ... 31
2.1.4 Top Level Diagram ... 38
2.1.5 Controlatron Interlock Control .. 38
2.1.6 List of SubVIs ... 45

Unload Module.vi ... 46
2.2.1 Connector Pane ... 46
2.2.2 Front Panel .. 47
2.2.3 Controls and Indicators ... 47
2.2.4 Block Diagram .. 48
2.2.5 List of SubVIs ... 49

Queue Manager.vi ... 50
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5

.
Connector Pane ... 50

Block Diagram .. 52

Front Panel .. 50
Controls and Indicators ... 50

List of SubVIs ... 54

5

2.4 Log System Event.vi ... 54
2.4.1 Connector Pane ... 54
2.4.2 Front Panel .. 54
2.4.3 Controls and Indicators ... 55

2.4.5 List of SubVIs ... 57
General Error Handler.vi .. 57
2.5.1 Connector Pane ... 57
2.5.2 Front Panel .. 58
2.5.3 Controls and Indicators ... 58
2.5.4 Block Diagram .. 61
2.5.5 List of SubVIs ... 64

2.6 Generate Error.vi .. 64
2.6.1 Connector Pane ... 64
2.6.2 Front Panel .. 64
2.6.3 Controls and Indicators ... 64
2.6.4 Block Diagram .. 66
2.6.5 List of SubVIs ... 67

2.7.1 Connector Pane ... 67
2.7.2 Front Panel .. 67
2.7.3 Controls and Indicators ... 68

2.7.5
2.8 MA Definitions.vi ... 70

2.8.1 Connector Pane ... 70

2.8.3 Controls and Indicators ... 70

2.8.5

2.4.4 Block Diagram .. 56

2.5

2.7 Register Module.vi ... 67

2.7.4 Block Diagram .. 69
List of SubVIs ... 69

2.8.2 Front Panel .. 70

2.8.4 Block Diagram .. 71
List of SubVIs ... 71

Initialize Module Manager.vi ... 71
2.9.1 Connector Pane ... 71

2.9.4 Block Diagram .. 72

2.9

2.9.2 Front Panel .. 71
2.9.3 Controls and Indicators ... 71

2.9.5 List of SubVIs ... 73
2.10 Set Windows State.vi .. 73

2.10.1 Connector Pane ... 73
2.10.2 Front Panel .. 74
2.10.3 Controls and Indicators ... 74
2.10.4 Block Diagram .. 76
2.10.5 List of SubVIs ... 77

2.1 1 Windows State.ct1 ... 78
2.11.1 Connector Pane ... 78
2.11.2 Front Panel .. 78

6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.1 1.3 Controls and Indicators ... 78

Send Message-Get Response.vi .. 79

2.11.4 Block Diagram .. 79
2.11.5 List of SubVIs ... 79

2.12.1 Connector Pane ... 79
2.12.2 Front Panel .. 79
2.12.3 Controls and Indicators ... 79

2.12

2.12.4 Block Diagram .. 81
2.12.5 List of SubVIs ... 82

Return Reference Manager.vi ... 82
2.13.1 Connector Pane ... 82
2.13.2 Front Panel .. 82
2.13.3 Controls and Indicators ... 82
2.13.4 Block Diagram .. 84
2.13.5 List of SubVIs ... 86

2.14 create gevent.vi ... 86

2.14.2 Controls and Indicators ... 87
2.14.3 Block Diagram .. 88
2.14.4 List of SubVIs ... 89

2.15.1 Connector Pane ... 89

2.15.3 Controls and Indicators ... 90

2.13

2.14.1 Front Panel .. 87

2.15 jLibrarian.vi .. 89

2.15.2 Front Panel .. 90

2.15.4 List of SubVIs ... 93
2.16 Librarian File Info In.ctl .. 93

2.16.1 Connector Pane ... 93
2.16.2 Front Panel .. 94
2.16.3 Controls and Indicators ... 94
2.16.4 List of SubVIs ... 95

Librarian File Info Out.ct1 ... 95
2.17.1 Connector Pane ... 95
2.17.2 Front Panel .. 95
2.17.3 Controls and Indicators ... 95

2.18 Librarian File List.ct1 .. 96

2.18.2 Front Panel 96

2.18.4 List of SubVIs ... 97
2.19 Destroy gevent.vi .. 97

2.19.1 Connector Pane ... 97

2.17

2.17.4 List of SubVIs ... 96

2.18.1 Connector Pane ... 96

2.18.3 Controls and Indicators ... 96
..

2.19.2 Front Panel .. 98
2.19.3 Controls and Indicators ... 98
2.19.4 Block Diagram .. 99

7

2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.19.5 List of SubVIs ... 100
Wait on gevent.vi .. 100
2.20.1 Connector Pane ... 100
2.20.2 Front Panel .. 100
2.20.3 Controls and Indicators ... 100
2.20.4 Block Diagram .. 102
2.20.5 List of SubVIs ... 103

Get Message.vi .. 103
2.21.1 Connector Pane ... 103
2.21.2 Front Panel .. 103
2.21.3 Controls and Indicators ... 103
2.21.4 Block Diagram .. 104
2.21.5 List of SubVIs ... 105

Send Message.vi ... 105
2.22.1 Connector Pane ... 106
2.22.2 Front Panel .. 106
2.22.3 Controls and Indicators ... 106
2.22.4 Block Diagram .. 107
2.22.5 List of SubVIs ... 108

CIC Set Interlock Setup Change.vi ... 108
2.23.1 Connector Pane ... 108
2.23.2 Front Panel .. 109
2.23.3 Controls and Indicators ... 109
2.23.4 Block Diagram .. 110
2.23.5 List of SubVIs ... 110

2.24.1 Connector Pane ... 110
2.24.2 Front Panel .. 110
2.24.3 Controls and Indicators ... 110
2.24.4 Block Diagram .. 111
2.24.5 List of SubVIs ... 111

CAS Set Interlock State.vi .. 111
2.25.1 Connector Pane ... 111
2.25.2 Front Panel .. 112
2.25.3 Controls and Indicators ... 112
2.25.4 Block Diagram .. 113
2.25.5 List of SubVIs ... 113

CCC Set Interlock State.vi .. 113
2.26.1 Connector Pane ... 113
2.26.2 Front Panel .. 113
2.26.3 Controls and Indicators ... 113
2.26.4 Block Diagram .. 114
2.26.5 List of SubVIs ... 114

PCS 01 OOlA Set Interlock State-vi .. 114
2.27.1 Connector Pane ... 114

CIC Query Interlock State.vi .. 110

I
I 8

I
1
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I

2.28

2.29

2.30

2.3 1

2.32

2.33

2.34

2.35

2.27.2 Front Panel .. 115

2.27.4 Block Diagram .. 116
2.27.5 List of SubVIs ... 116

CIC Variablesctl .. 116
2.28.1 Connector Pane ... 116
2.28.2 Front Panel .. 117
2.28.3 Controls and Indicators ... 117
2.28.4 List of SubVIs ... 118

CIC Channel Setup.ct1 .. 118
2.29.1 Connector Pane ... 118
2.29.2 Front Panel .. 118
2.29.3 Controls and Indicators ... 118
2.29.4 List of SubVIs ... 118

CIC DAQ Get Interlock Status.vi ... 118
2.30.1 Connector Pane ... 118
2.30.2 Front Panel .. 119
2.30.3 Controls and Indicators ... 119
2.30.4 Block Diagram .. 120
2.30.5 List of SubVIs ... 121

Read from Digital Port-With Error.vi .. 121
2.31.1 Connector Pane ... 121
2.3 1.2 Front Panel .. 122
2.3 1.3 Controls and Indicators ... 122
2.31.4 Block Diagram .. 123
2.31.5 List of SubVIs ... 124

DIO Port Config.vi ... 124
2.32.1 Connector Pane ... 124
2.32.2 Front Panel .. 124
2.32.3 Controls and Indicators ... 124
2.32.4 Block Diagram .. 126
2.32.5 List of SubVIs ... 126

DIO Port Read.vi .. 126
2.33.1 Connector Pane ... 127
2.33.2 Front Panel .. 127
2.33.3 Controls and Indicators ... 127
2.33.4 Block Diagram .. 128
2.33.5 List of SubVIs ... 129

Driver Demo Global.vi ... 129
2.34.1 Connector Pane ... 129
2.34.2 Front Panel .. 129
2.34.3 Controls and Indicators ... 130
2.34.4 List of SubVIs ... 131

2.35.1 Connector Pane ... 131

2.27.3 Controls and Indicators ... 115

Respond To Message.vi .. 131

9

2.36

2.37

2.38

2.39

2.40

2.35.2 Front Panel .. 131
2.35.3 Controls and Indicators ... 131
2.35.4 Block Diagram .. 133
2.35.5 List of SubVIs ... 133

Set gevent.vi ... 133
2.36.1 Connector Pane ... 133
2.36.2 Front Panel .. 134
2.36.3 Controls and Indicators ... 134
2.36.4 Block Diagram .. 135
2.36.5 List of SubVIs ... 136

Get Response Reference.vi ... 136
2.37.1 Connector Pane ... 136
2.37.2 Front Panel .. 136
2.37.3 Controls and Indicators ... 136
2.37.4 Block Diagram .. 138
2.37.5 List of SubVIs ... 138

Simple Error Handler.vi .. 138
2.38.1 Connector Pane ... 138
2.38.2 Front Panel .. 138
2.38.3 Controls and Indicators ... 139
2.38.4 Block Diagram .. 140
2.38.5 List of SubVIs ... 140

2.39.1 Connector Pane ... 140
2.39.2 Front Panel .. 140
2.39.3 Controls and Indicators ... 141
2.39.4 Block Diagram .. 142
2.39.5 List of SubVIs ... 143

Get Screen Size.vi ... 143
2.40.1 Connector Pane ... 143
2.40.2 Front Panel .. 143
2.40.3 Controls and Indicators ... 144
2.40.4 Block Diagram .. 144
2.40.5 List of SubVIs ... 144

CIC File Management.vi ... 140

10

I
I
1
1
1
I
I
i
1
i
I.
i
1
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 1. Revision History Table ... 4
Figure 2. System Administrators .. 14
Figure 3. (Previous Page) Controlatron Interlock Control Center Panel 15
Figure 4. Controlatron Interlock Control Module Idle Case 16
Figure 5. Controlatron Interlock Control Module ‘Get Interlock State’ Case 17
Figure 6. Example Queued State Machine ‘Idle State’ .. 19
Figure 7. CIC Top Level Diagram (Message Manager Idle Event) ... 20
Figure 8. Packing Data For Message Management .. 22
Figure 9. Un-Packing Data Received in a Message ... 22
Figure 10. Packing and Un-Packing Data Summary .. 22
Figure 1 1 . General Message Manager Architecture. 23
Figure 12. Module Responsibility Layout .. 23
Figure 13. Example ‘Access Function’ 26
Figure 14. Adding Events to the ‘Queue’ of a Queued State Machine .. 28
Figure 15. Programmatically adding events to the Queue 28

11

(INTENTIONALLY LEFT BLANK)

I
12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 Controlatron Software Overview

1.1 Overview

The Controlatron Software Suite is a custom built application to perform automated testing of
Controlatron neutron tubes. The software package is capable of allowing users to design tests
and to run a series of test suites on a tube. The data is output to ASCII files of a pre-defined for-
mat for data analysis and viewing with the Controlatron Data Viewer Application.

The software is designed to specifically control the system hardware defined by the Sandia
documents: Controlatron Tube (Wire Reservoir) Test Procedure, drawing #10024353-000 and
Product Specification, Controlatron Tube (U), drawing #PS70479 1. The software only controls
the hardware designed with the system, but the source code was written with a modular design
that is adaptable to rapid change.

The Controlatron Software Suite is comprised of four software manuals:

1. CIC Controlatron Interlock Control
2. CAS Controlatron Acquisition System
3. CCC Controlatron Control Center
4. PCS Power Control System

These four manuals working in concert as a quad state machine provide the necessary instrument
setup and control to perform a test.

This document will detail the CIC module. This manual handles all the interlock and safety as-
pects of the test suite.

1.2 Software Specifications

Operating System: Windows 2000

Programming Language\Version: LabVIEW 6.02 (LabVIEW 6i with the 6.02 update patch)
NIDAQ Version:
Fieldpoint Version:
Message Manager Version: v5.0.6
GPIB Version:

NIDAQ 6.9 (National Instruments)
Fieldpoint 2.0 (National Instruments)

NI 488.2 Version 1.70

Executable Program Name:
Top Level Program Name:
Data Viewer App Name:

Controlatron Test Suite RevX-X.exe
CCC Top Level.vi
Controlatron Data Viewer RevX-X.exe

Minimum System Requirement:
Memory Requirement:

Pentium 11, 400MHz or better PC
128 Mb Minimum, 256 Mb recommended

13

Network Requirement:

Name

William P. Noel

Robert Hertrich

TCPIP protocol network connection (for data storage)

Phone Email Company

505-845-8796 wpnoelQsandia.qov SNL

505-294-001 0 rhertrich 8 primecoresvstems.com Primecore Systems, Inc.

1.3 System Adminis,:ators

Keith Barrett 505-294-001 0 kbarrett Q primecoresvstems.com Primecore Systems, Inc.

Figure 2. System Administrators

1.4 Hardware Considerations

This document does not address the hardware configuration of the Controlatron tube as it is
placed or operated within the test fixture. Please note that the operation of the Controlatron Test
Suite Software within the facility is considered a hazardous operation due to high voltages used
and the production of radioactive flux. Appropriate safety procedures must be in place and ad-
hered to during the operation a Controlatron neutron tube.

1.5 Configuring the Interlock System

The interlock system is configured on the Controlatron Interlock Control Center Screen. This
screen allows the user to alter the configuration of the interlocks, view the status of each inter-
lock and the overall interlock state.

The Interlock system uses the first 16 lines of the digital n0 card. The user can select which
channels to use with the Active button on the channel. Name the interlock channel and set the
polarity of a passing interlock (whether high or low is a passing interlock). The Interlock State
indicator shows if the interlock is OK or failed.

The overall interlock state is passing when all of the active interlocks are passing (green).

The example above shows three active interlocks (doorl, door2, and cabinet lid), which are
passing when the line is less than 3 volts.

The Digital no card will sense logic high at any voltage above 3V and can accept any voltage
up to 28V.

14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

http://primecoresvstems.com
http://primecoresvstems.com

I I I I I I I I I I I I I I I I I I I
15

16

I I I I I I I I I I I I I I I I I I I
17

When changes are made, they are automatically saved and the interlock setup will be the
same the next time the system is used.

1 51 .1 Overview

This module monitors the interlocks and informs the other modules of the interlock state so shut
down will occur in the event of an interlock fault.

1.5.1.2 Operation

The Idle case determines if user changes of the configuration have occurred and if so, it replaces
the interlock setup variable data.

The CIC DAQ get interlock status VI, calls the DIO card and checks the first 16 input channels
of the DIO card. If the Interlock states change, it sends the message “set interlock state’’ to all
other modules telling of its condition.

1.5.1.3 Hardware and Instruments

DIO6527

The Interlock Module utilizes the National Instruments DIO 6527 card. This card is an opti-
cally isolated DIO card that can accept 24 channels of 0-28 V Input (above 2V is a logic
high) and can switch 24 channels of digital outputs 0-60 V up to 0.120 amps.

The Interlock Module only calls the DIO card drivers. These are basic DAQ Read Digital Port
calls standard to LabVlEW that control any series of DIO card (so long as the hardware has
enough lines).

1.6 Message Manager Architecture Description and Tutorial

Primecore Systems utilizes one of two basic architectures for implementing GUIs and complex
sub-programs: the queued state machine, and the message manager system. They are both simi-
lar in concept and very flexible. The major difference is that the queued state is primarily de-
signed to be a single stand-alone program and the message manager is designed for running
multiple programs that can all communicate with each other through a standardized interface.
The Queued state is generally better for novice programmers and simple systems, while the mes-
sage manager is targeted toward large complex systems and distributed systems. This document
is intended as a reference guide to learn to troubleshoot and implement the Message Manager
based programs in general terms. Open the VI “Sample User Interface.vi” which is used as the
example for this tutorial.

18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1.6.1 What is a state machine?

In its simplest terms a state machine is just a case structure inside a while loop. It is a handy way
to piece together an application. There are often a large number of cases, each responsible for
taking a particular action. Additionally, there is always at least one case that runs when nothing
is happening and checks to see if the program should do something. The basic theory is that
when nothing is pressed or nothing is going on, all the program does is check to see if it should
be doing something. If it needs to do something, the program figures out what it should do and
calls up the case or cases responsible for doing that task and those cases then perform whatever
needs to be done. In the example below, when the user presses the left button for instance, the
program goes to the left case and moves the piece to the left if it can. This creates a simple yet
very flexible architecture for programming virtually any user interface in LabVEW.

Event List

Add new events to call
by copying an indicator
above. The order of this
cluster must match the
order of the build array
in the idle case.

add Timed event

Check for any button presses

Keep the block diagrams small if possible!!!!!
you don’t need large diagrams if you make good
use of sub VIS. I t usually simpliiies the code.

Figure 6. Example Queued State Machine ‘Idle State’

1.6.2 What is a ‘State?’

Each Case in the case structure encased in the while loop is considered a ‘State.’ Each State can
be called to perform an action based upon a user request, managed in the ‘Idle’ State, or pro-
grammatically by any other available state. Each state has a unique name and should perform
one logical group of functions. An example of a reasonable state is a ‘Write Data File’ state.
This example state would manage all of the necessary functions to create a file, write data to the
new file, and then close the systems resources used in the file creation. In the application, this
one state could manage the entire data file writing requirements. An advantage to the developer
is the inherent modularity in the architecture.

19

1.6.3 What is the Message Manager? I
I
I
I

There are many ways to implement a state machine. The message manager serves as the message
queue and communications portal for a state machine or a collection of state machines running in
concert. There is a set of utility VIS called the message manager that handles all of this commu-
nication. On top of these utility VIS, the message manager is a philosophy and method of pro-
gramming architecture that is centered around multiple state machine VIS running concurrently,
passing data and actions to each other through the message manager utilities. Each separate state
machine VI is also called a “module” since if you design the code well, then each major function
or sub-system will have its own “module” that can be reused and debugged by itself, independent
of other modules.

I
1.6.3.1 The Key Elements to the Message Manager are:

Modules: These are state machine programs that serve as user interfaces, drivers, or pro-
grams to control a system. These are developed as state machines by the programmer that
utilize the message manager. These are the basically all the high level components of a Lab-
VIEW application created using the message manager architecture. I

I
I
I
I
I

------ I
I Figure 7. CIC Top Level Diagram (Message Manager Idle Event)

I
I
I

Figure 7 is the Idle Event of the CIC Top Level.vi found in the Controlatron Application.
Notice the differences between this diagram and the Queued State Machine Diagram illus-
trated in Figure 6. There are events prior to executing the main ‘While LOOP’ that are re-
quired to register this VI as a Module.

Module Manager: This is a behind the scenes program that is the heart of the message man-
ager. It contains queues for modules, initializes, or destroys queues.

20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

0 Register Module: This VI serves to initialize the message manager and to initialize the mod-
ule that this VI is placed in. Normally, this is the first VI called in a module. This tells the
module manager to allocate a queue for this module.

Get Message.VZ: Every module should use the Get Message.VI to run the state machine. It
checks the queue for messages for that module and feeds a set of strings (the message) to the
case structure of the state machine. It basically runs every state machine.

Send Message.VZ: This VI is used to send a message to a module that is retrieved later by
the Get Message.VI. To use it, specify the module you want to send the message to (by
name), the event (the case you want to run), and the event buffer (any data you want to send
with the message).

1.6.3.2 What is a Message?

A message is a set of data that tells a module what state to go to and provides data for that state
to run if necessary. In simple terms, the message Manager VIS use 3 strings to make up a mes-
sage: the event, the event buffer, and the source. This elaborates on most state machines in that a
string defines the state, and it also contains data to run with the state. This often proves to be
more useful and flexible than just using a queue of states and transferring data and variables
separately.

0 Event: This is a string that tells a module what case (event) to run. It is output by the “get
message.vi” and should be wired in to the case selector of the module. The event should
match the name of acase in the module

0 Event Buffer: This is a string that can contain data to be used in conjunction with the event.
You can represent any type of data as a string, that is why that was selected. This allows you
to transfer data between different modules. This is optional, you don’t always need data,
sometimes it is enough just to tell the module what event to go to.

Source: This tells what module the message came from. This is useful for troubleshooting
when you have multiple modules communicating with each other.

1.6.3.3 How do I add events to the message queue?

Since all top-level programs running in a message manager based system use the “get mes-
sage.vi” to run the state machine, you must use the message manager VIS to control the actions of
your program.

To send a message to run a case from inside the same module you can use the “send message.vi”
or the “deliver message.vi”. The key difference between these two is that the send messages puts
the message at the end of the stack, and deliver message bumps the message to the top of the
stack (forces it to be the next event run). If you are sending a message to the module you are in,
then you don’t need to wire in the destination module input.

21

1.6.3.4 Packaging and Un-packaging Data for a Message

Using the message manager, one of the most time consuming and difficult tasks is to convert the
data to string for the event buffer data. Using the following strategies can help packaging the
data and remain flexible and change tolerant.

For Simple data such as a Boolean, array, or numeric it is easiest to use the type cast function to
pack data to a string for sending through the message manager.

T2 A S \sT 0 p \ s L e v e Lv b

m t e r b c k S tate

e m r o u t

U

Figure 8. Packing Data For Message Management

m--l

T m e
C a s t

Figure 9. Unpacking Data Received in a Message

For sending more complex data structures, it is usually easiest to package the data using the
Flatten and Un-flatten from string functions. These will convert complex clusters or other data
types to a string. The best way to do this is to use a cluster saved as a type-def control. Use the
type-def control as the key to flatten and un-flatten the data as shown below. Using a type-def
means that if you change the type-def data type, it will automatically update all the packaging and
un-packaging functions you create for you and make the code more robust and tolerant to change.

P a c k a g n g and send-
a m e s s a g e the data

R e t m i t n g and U n g a c k n g

D e s m a m n M o d u k

e v e n t

T yp e d e f C 0 n m 1 C hste r

y p e d e f l h d r a m r c kster

T h s c a n b e a c b s t e r

o f a n y d a t a t y p e '

T y p e d e f C O n s m n t C h s t e ~

P

Figure 10. Packing and Unpacking Data Summary

22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

User lnte dace Module

1.7 Overall Architecture of a Message Manager Based Program

Test Control Module

The basic concept is to break up a large application into several modules that handle a particular
task or sub-systems. That way you may be able to reuse modules and also have different pro-
grammers working on different modules so you can break up a project into smaller pieces easier.
All the modules communicate to each other through the message manager.

DAQ
Module

File
Module

I

Power
Contro I
Module

Interlock
Module

Figure 11. General Message Manager Architecture

Through the message manager, any module can communicate with any other module, but in gen-
eral it is usually a good idea to have one or two high level modules that generally control the ap-
plication and call a series of modules that perform the low level tasks of the system. If the
system isn’t very complex, then it is simplest to use a single high-level application to control the
logic of the control system, and many modules to perform the sub-tasks and control sub-systems.
If it is a large application, you may wish to create a more complex hierarchy and object-orient
the design of the code. See the discussion on object orientation at the end of the tutorial.

1

Figure 12. Module Responsibility Layout

23

1.8 Remote Message Manager

This basic architecture lends itself well to distributed applications running on different machines.
The remote message manager just adds a layer to calls going to another computer. The remote
message manager.vi is the engine that manages the remote connections. Once you establish a
connection to another machine, then you can use the “send remote message.vi” instead of the
send message.vi to communicate with a remote machine. Architecturally, it allows multiple pro-
grams running on different machines to communicate through a common interface. In future
versions of the message manager it is planned to implement this more transparently without sepa-
rate “remote” calls.

1.9 Advantages of a State Machine in General

Size: It allows you to make a large program with a small block diagram.

Efficiency: The state machine tends to efficient if implemented properly.

Troubleshooting: Since every action takes place pretty much in its own event (or case) it
tends to be far easier to figure out what is going on than other architecture styles. Since the
diagrams are smaller and more segmented, the light bulb and single step features work better
than with large diagrams. They also tend to produce less “race conditions” by nature since
everything is divided into small cases.

Standardization: If every developer in a group uses it, it is much easier to debug and aug-
ment someone else’s code.

Flexibility: You can create any sequence of actions you desire with a state machine.

1 . lo Advantages of the Message Manager

Standardization: The best feature is that it is a flexible architecture that can be adapted to
just about any program. It is a more intricate philosophy than a queued state machine.

Parallel Operation: This allows you to run many sub systems together, all running in paral-
lel with their own loop update rates.

Scalability and Reusability: If you are careful in your top-level design, you can create mod-
ules that can be used in other programs with a minimum of rewriting code. Also, if you de-
sign your modules well, you can have stand-alone sub programs for sub-systems independent
of your top level application, or you can use access functions to very quickly build new pro-
grams.

Common Data Portal: All data that passes between different sub-programs uses the same
interface. This reduces complexity and makes the code easier to understand.

24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 .I 1 Disadvantages of the Message Manager

Speed of Object Oriented Code: Object oriented code requires more overhead in accessing
data and the functionality of the system. It generally makes better code, but there are more
layers to access data and function, thereby slowing down the code. The message manager is
pretty well optimized, but if you are transferring large amounts of data, it can slow the system
down.

More difficult to troubleshoot than a simple state machine: It is harder to figure out what is
going on with multiple modules running together than a single state machine. Design how
the modules interact before integrating the modules together! Also, be sure to document how
the system modules interact, otherwise it is very difficult to figure out what is going on a year
down the road.

More Up-Front coding time: It takes longer to write and get it working, especially if you use
access functions and object-orient it. However, if you design it well, it should be easier down
the road to troubleshoot and add functionality. Also, it should speed up projects with multiple
developers since it is by nature modular. It is not recommended for a simple DAQ applica-
tion, but it is recommended for complex systems involving multiple instruments and\or func-
tionality.

1 .I 2 Object Orientation Using the Message Manager

The message manager architecture is well suited to making LabVlEW code more Object Ori-
ented. You can’t truly make LabVIEW code completely object oriented, but using the strategies
below; you can accomplish most of the key properties of object-oriented code.

With the message manager architecture, the key to accomplishing object orientation is to first
create modules for each major sub-system. The modules will be the “objects”. The module
should contain all of the functionality for the sub-system or user interface. If you are really gung
ho about object orientation, you can even adapt the modules to create copies of themselves and
refer to them by reference for using multiple objects that are the same. That is beyond the scope
of this discussion, but certainly possible.

Additionally, all of the data involved with the sub-system should reside in the module (no globals
or shortcuts) and should only be accessed through function calls to the module. If you need the
data from a module in the user interface or another module, you should create an access function
that reads it from the module itself and displays it through the user interface (or wherever). That
way your data is protected and can only be accessed through proper channels. Also, write access
functions for all commands, functions, setups, or whatever you need to command the module to
do. Like the data encapsulation, it forces the programmer to go through proper channels to
command the module to perform an action.

The sample uses both simple methods and some of the object-style access functions to call the
modules so you can see the benefits of writing access functions for your modules.

25

So an object should consist of a set of VIS and type-def controls as follows.

The Module VI: This is the message manager based state machine that contains all of the
functionality code of the sub-system. It serves as the “object.” It also contains all the data as-
sociated with that module, preferably in a shift register.

Access Functions: These functions call the module through the message manager and per-
form a function or to return data. These functions encapsulate the module; so write access
functions for everything you need to do with the module object. These are how to utilize a
module if you want it object oriented. In other words, don’t use the send message or package
or un-package the data for another module in the diagram of a module, use access functions
for everything.

Figure 13 is a block diagram for a simple access function. It packages the data, tells it what
case and module to go to so all the programmer needs to do is to drop this access function
down and wire in the Arm Boolean. This helps encapsulate the functionality of the module.

Arm
error out

Figure 13. Example ‘Access Function’

Type-Def Controls: Use type definitions or strict type-def controls for all complex data
structures. That way your modules and access functions change together automatically if you
have to change your data types. Use clusters and use unbundled and bundle by name wher-
ever possible so that the code does not break when you add a variable. Try not to rename or
delete variables unless necessary.

1.1 3 Queued State Machine Architecture Description and Tutorial

Primecore Systems utilizes one of two basic architectures for implementing GUIs and complex
sub-programs: the queued state machine, and the message manager system. The more simple
architecture used is the Queued State Machine.

26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1.13.1 First of all, what is a state machine?

In its simplest terms a state machine is just a case structure inside a while loop. There are often a
pretty large number of cases, each responsible for taking a particular action. Additionally, there
is always at least one case that runs when nothing is happening and checks to see if the program
should do something. So the basic theory is that when nothing is pressed or nothing is going on,
all the program does is checks to see if it should be doing something. If it needs to do something,
the program figures out what it should do and calls up the case or cases responsible for doing that
task and those cases then perform whatever needs to be done. In the example below, when the
user presses the left button for instance, the program goes to the left case and moves the piece to
the left if it can. This creates a simple yet very flexible architecture for programming virtually
any user interface in LabVIEW.

1.13.2 What is a queued state machine?

There are many ways to implement a state machine; the queued state method utilizes a queue that
is an array of strings to control the state machine. When an action is evoked, the state machine
adds a string element to the queue array. The next time the loop cycles the string element is fed
into the case structure using the Get Next Event VI. Using an array of strings allows for a whole
sequence of events to be loaded up in the queue and run one after another for cascaded events.

1.1 3.3 How do I add events to the queue?

Add New Events and Add Periodic Events VIS can be used to add events to the queue. The input
elements are a list of events (as an array of strings) that are potentially available and a Boolean
array that tells the sub-VI weather each event should run or not (a true causes that event to be
added to the queue). The array of strings just needs to match up element for element with the ar-
ray of Booleans.

Other ways of taking action can include comparing a value of an indicator to its previous value.
If they are not equal, the Boolean is true and an action should occur.

Figure 14 shows an example of using a cluster and a shift register to contain variables. In the idle
case it checks the value of the piece variable and if it changes it will feed a true to the add new
events case and cause an action to happen. That way you can use the state machine to control
events based on changing values or Booleans.

Also, if you want to call one case right after another you can use the build array function to call
another event. That is useful for cascaded actions or for sequential operations.

The Build array in the upper right side causes the update piece case to be called right after the
move piece case is called.

27

Makes the state machine

E vent List " a
Add new events to call @

by copying an indicator . ."* -"-- r *

above. The order of this
cluster must match the
order of the build array
in the idle case.

--<queue>

-<Possible events>

add Timed event, down
LEFT
Right

Exit
Flip

Check for any button presses

Keep the block diagrams small if possible!!!!!
you don't need large diagrams if you make good
use of sub VIS- I t usually simplifies the code.

Figure 14. Adding Events to the 'Queue' of a Queued State Machine

Figure 15. Programmatically adding events to the Queue

1.13.4 Timed Events

Using the Add Periodic Events VI, you can cause an action to occur every time interval. In this
example the move piece case gets called every half a second to drop the piece. It works just like
the Add New Events except that it only adds events when the timer goes off.

28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1.13.5 What can I do in a “State?”

Everything that happens should pretty much have its own case or state. You can update the dis-
play, send a command to an instrument, or read in information in a case.

1.13.6 Advantages of a State Machine

Size: It allows you to make a large program with a small block diagram.

Efficiency: The state machine tends to be efficient if implemented properly.

Troubleshooting: Since every action takes place pretty much in its own event (or case) it
tends to be far easier to figure out what is going on than other architecture styles. Since the
diagrams are smaller and more segmented, the light bulb and single step features work better
than with large diagrams.

Standardization: If every developer in a group uses it, it is much easier to debug and aug-
ment someone else’s code.

Flexibility: You can create any sequence of actions you desire with a state machine.

29

(INTENTIONALLY LEFT BLANK)

I

30

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2. Controlatron Interlock Control System

2.1 CIC Top Level.vi

This Vi is a module in charge of checking the interlocks of the Controlatron test facility. It reports the inter-
lock status directly to all the other modules.

2.1.1 Connector Pane

2.1.2 Front Panel

2.1.3 Controls and Indicators

Interlock Setup Interlock State Indicators show the current state of the interlock channels adja-
cent to them.

Channel 1 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

31

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

F---.-v- a ___ls
Channel 2 Determines if this channel is actively monitored as part of the Interlock Sys-
tern.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 3 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

FE%=q - %en4 Channel 4 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

p.--.a a Channel 5 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

32

I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

II__

+I $ 3 ~ : Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 6 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 7 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock. m]
To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 8 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

~

Channel 9 Determines if this channel is actively monitored as part of the Interlock Sys-

33

tern.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

B! Channel 10 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 11 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 12 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

34

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Channel 13 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock. ml
To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

lll_ - Channel 14 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 15 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

a Channel 16 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

-I a

35

Exit

j[TFlj Demo Channel States Values are used for demo purposes only.

Boolean

7 Variables

Go

Interlock Setup

p L % ~ u d b Channel 1
- r p j \ .
____r

Active

Polarity

Label

f[TFff Interlock State

Interlock State 1

QueryTimer

System State

RemoteMode

-? Interlock State

Interlock State 1 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 2 Indicates the current interlock state of the adjacent defined interlock
channel.

ml Interlock State 3 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 4 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 5 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 6 Indicates the current interlock state of the adjacent defined interlock
channel.

m] Interlock State 7 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 8 Indicates the current interlock state of the adjacent defined interlock

36

I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

channel.

Interlock State 9 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 10 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 11 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 12 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 13 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 14 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 15 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 16 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State The Armed button indicates and controls the state of the acquisition system.
Arming the system can take up to 30 seconds.

Once the system is armed, the Manual Trigger will become available if the user is not in a prede-
fined test mode.

Front Panel

m] left = top

right

bottom

37

2.1.4 Top Level Diagram

2.1.5 Controlatron Interlock Control

Case: 0

Case: 1

Case: 2

38

Case: initialize

I
I
I

I
I
I
I
I
I
I
I
I
I
I

Case:

open setup File and initialize all controls here
1

DIO card initializing in
I

Interlock setup Change

Case: 0,Default

39

Case: 1

Case: 2

tate 3

Case: 4

tate 5

Case: 5

Case: 6

Case: 7

tate 8

Case: 8

tate 9

40

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Case: 9

Case: 10

Case: 11

Case: 12

Case: 13

tate 14

R- 3

Case: 14

Case: 15

tate 16

41

Case: Get Interlock State

Case: False

Case: False

Case: False

42

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Case: Send Interlock State

.....

Case: False

Case: Remote Mode

43

Case: Move Panel

R I

Case: Wait

44

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Case: Exit

Save Current Setup here

Case: False

2.1.6 List of SubVls

Unload Module.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060.Ilb\Unload Module.vi

Register Module.vi
Mod,,lc C:\Controlatron\Developmenthsg v5.0.6\Msg5060.11b\Register Module.vi

Get Message.vi
55P C:\Controlatron\Developmenthsg v5.0.6Wsg5060.Ilb\Get Message.vi

Send Message.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.Ilb\Send Message.vi

CIC Set Interlock Setup Change.vi
C:\Controlatron\Development\Controlatron Interlock Control System\CIC Set Interlock Setup
Change.vi

CIC Query interlock State.vi
C:\Controlatron\Development\Controlatron Interlock Control System\CIC Query Interlock State.vi

CAS Set Interlock State.vi
C:\Controlatron\Development\Controlatron Acquisition System\CAS Set Interlock State.vi

45

CCC Set Interlock State.vi
C:\Controlatron\Development\Controlatron Control Center\CCC Set Interlock State.vi

PCS 01 001 A Set Interlock State.vi
C:\Controlatron\Development\PCS 01 001 A Power System\PCS 01 001 A Set Interlock State.vi

CIC Variablesctl
C:\Controlatron\Development\Controlatron Interlock Control System\CIC Variablesctl

CIC Channel Setup.ctl
C:\Controlatron\Development\Controlatron Interlock Control System\CIC Channel Setup.ctl

CIC DAQ Get Interlock Status.vi
C:\Controlatron\Development\Controlatron Interlock Control System\CIC DAQ Get Interlock
Status.vi

Respond To Message.vi
C:\Controlatron\Developrnenthsg v5.0.6\Msg5060.Ilb\Respond To Message.vi

Get Response Reference.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.Ilb\Get Response Reference.vi

Read from Digital Port-With Error.vi
C:\Controlatron\Development\Controlatron Physical Drivers\DIO\Read from Digital Port-With Er-
ror.vi

Simple Error Handler.vi
C:\Program Files\National Instruments\LabVIEW 6\vi.lib\Utility\error.Ilb\Simple Error Handler.vi

CIC File Management.vi
C:\Controlatron\Development\Controlatron Interlock Control System\CIC File Management.vi

Get Screen Size.vi
C:\Controlatron\Development\Utilities\Winsys.llb\Get Screen Size.vi

Unload Module.vi

This VI unloads the module specified by Module Name. If Module Name is not wired, the VI will unload
the module it is running in. The process of unloading a module involves the following steps:

(1) The module's private queue is destroyed, thus preventing it from receiving messages.
(2) Execution of Module Name is terminated.
(3) Module Name is unloaded from memory.

Since module execution may be aborted, the developer must be careful not to unload a module while the
module is performing 110 processing or any other operations that should not be interrupted.

This VI will unload Module Name regardless of the incoming error condition.

2.2.1 Connector Pane

46

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.2.2 Front Panel

2.2.3 Controls and Indicators

Module Name. Name of the module to be unloaded.

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

timeout

error out The error out cluster passes error or warning information out of a VI to be used by other
VIS.

r-

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

47

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.2.4 Block Diagram

(0) F module name IS empty,
use d e r ' s module.

(1) lookup Module Manager's
queue reference.

(2) calculate message's Muce,
(3) check whether reference IS

vab i
(4) if not valtd, log the event

(d s M m m e 6 error n (no error) error out
regstered or not rummg).

(5) if reference IS vdi, add
message to queue.

Case: Error

Case: Default

48

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Case: True

2.2.5 List of SubVls

Queue Manager-vi
C:\Controlatron\Development\rnsg v5.0.6\Msg5060.Ilb\Queue Manager.vi

syam log system event.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060.11b\log system event.vi

Generate Error.vi
C:\Controlatron\Developrnenthsg v5.0.6\Msg5060.11b\Generate Error.vi

49

2.3 Queue Manager.vi

Reserved.

2.3.1

2.3.2

2.3.3

Connector Pane

Reason

Queue Reference
error in (no error)

Destination Module Reference

error out

I
I
I
I

Front Panel

I
I
I

Controls and Indicators

Destination Module

Reason

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

I
I
I

50

I
I
I

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

active queues

Queue Reference 2

Queue Reference

Reference

error out The error out cluster passes error or warning information out of a VI to be used by other
VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.3.4 Block Diagram

error in (no error)

Reason

Destination Module
Queue Reference

Get Queue reason:
(1) lookup module name in

Initialize reason: Remove Queue reason:
(1) clear queue names and (1) look up module name in

references lists. the manager fists. the manager lists.
(2) if module is not on the list, (2) if module is not on the list,

Create Queue reason: don't do anything. don't do anything.
(1) add module name and queue (3) if module is on the list,

reference to the internal lists-
(31 if module is on the list,

find its queue reference,
(4) return queue reference.

destroy its queue (remove
queue name and
reference from the lists).

Case: Initialize

I
I
I
I
I
I
1
I

52

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Case: Create Queue

Case: Remove Queue

Case: -1

Case: -1

53

Case: Error

2.3.5 List of SubVls

None

2.4 Log System Event i

This VI adds an event to the application’s event log.

If there’s an error condition in the error in cluster, this VI will add the error information to the event log. If
there’s no error condition, the VI will add the information in the event string to the event log.

If there’s no error condition and event is empty (or unwired) this VI will do nothing.

2.4.1 Connector Pane

2.4.2 Front Panel

54

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.4.3 Controls and Indicators

Error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

event

source level (1)

error out The error out cluster passes error or warning information out of a VI to be used by other
VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

55

2.4.4 Block Diagram

Case: True

Case: False

56

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Case: True

2.4.5 List of SubVls

General Error Handler.vi
C:\Program FilesWational Instruments\LabVIEW 6\vi.lib\Utility\error.Ilb\General Error Handler.vi

Queue Manager.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.Ilb\Queue Manager.vi

2.5 General Error Handler.vi

Determines whether an error has occurred. If an error has occurred, this VI creates a description of the
error and optionally displays a dialog box.

2.5.1 Connector Pane

57

2.5.2 Front Panel

2.5.3 Controls and Indicators

type of dialog (OK msg:l) type of dialog determines what type of dialog box to display, if any.

[exception code] exception code is the error code that you want to treat as an exception. By
default, it is 0.

[exception source] exception source is the error message that you want to use to test for an
exception. By default, it is an empty string.

58

I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I

[error source] ('I ") error source is an optional string you can use to describe the source of error
code.

[error code] (0) error code is a numeric error code.

[exception action] (none:O) exception action is a way for you to create exceptions to error
handling.

[user-defined codes] user-defined codes is an array of the numeric error codes you define in
your VIS.

user-defined codes is an array of the numeric error codes you define in your VIS.

[user-defined descriptions] user-defined descriptions is an array of descriptions of user-
defined codes.

user-defined descriptions is an array of descriptions of user-defined codes.

error descriptions

error codes

prompts

i- & Error %d occurred at %s

Warning%d occurred at %s

Possible reasons: %s

Error not listed

GetCommError x%lx

Continue

stop

an unidentified location

No Error

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code numeric identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code out code out is the error code indicated by the error in or error code.

source out source out indicates the source of the error.

error? error? displays if an error was found. If this VI finds an error, it sets the parameters in the
error cluster.

message message describes the error code that occurred, the source of the error, and a de-
scription of the error.

error out The error out cluster passes error or warning information out of a VI to be used by
other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code numeric identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

60

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.5.4 Block Diagram

Case: 0

Case: False

61

Case: True

Case: True

Case: True

Case: False

62

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Case: 0

Case: True

Case: True

Case: False

Case: 0

63

Case: 1

2.5.5 List of SubVls

None

2.6 Generate Error.vi

This VI generates a user-defined error in the "error out" cluster.

2.6.1 Connector Pane

error code (-1301)

error in (no error)
error type (error:T) ''.

source level (1)

VISA session dup VISA session

error out

2.6.2 Front Panel

2.6.3 Controls and Indicators

VISA session

error in (no error)

64

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
B
I
I
I
I
I
I
I
I
I
I

p i j

status status is TRUE if an error occurred before this VI was called, or FALSE if not. If
status is TRUE, code is a non-zero error code. If status is FALSE, code can be zero or a
warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler VIS to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

error type (error:T) Selects whether to generate an error or a warning:

error = asserts an "error out" 'status' of true, which is system critical and will disable all polling of
instrumentation until it is cleared.

warning = asserts an "error out" 'status' of false, which is not system critical and will not disable
the polling of instrumentation.

error code (-1301) The error code that will be placed in 'code' of "error out".

Several regions of the error code "band" (an 132 number) are allocated for generating errors ex-
ternal to LabVIEW.

Instrument Driver Error Codes:
-1 21 0 = Parameter out of range
-1 223 = Instrument identification query failed
-1 236 = Error Interpreting instrument response
-1300 = Instrument-specific error
-1 301 to -1 399 = is used for any instrument specific errors. This band of errors may be assigned
developer-defined error messages using the "General Error Handler.vi". The error code -1 300
should be avoided, because it is a generic instrument driver error and a specific error message
cannot be generated for it.

User-Defined Error Codes:
A region from 5000 to 9999 is set aside for any user-defined errors. This band of errors may be
assigned user-defined error messages using the "General Error Handler.vi".

IMPORTANT:
Because it is possible to assign error codes that overlap with other previously defined error codes
(Le. several instruments may use the -1302 error code which may mean different things to those
instruments), it is important to use several techniques to avoid this.

1) Instead of using the "General Error Handler.vi", instead use "BBT Error Handler.vi". This error
handler only generates an error message for instrument-specific and user-defined errors if the
incoming 'source' in "error in" contains a specific string, which is set by the developer. For exam-
ple, "BBT Error Handler.vi" would look for an instrument prefix in an incoming error for an instru-
ment driver. It is, therefore, important to follow naming conventions set for instrument drivers.

2) Make sure every instrument driver is bundled with its own "PREFIX Error Message.vi" which
uses the "BBT Error Handler.vi" and decodes and displays its own error messages.

65

source level (1) Specifies the level of the "call chain" at which the error was generated.

Since the call chain includes all of the names of every VI from this VI to all others that call it, it is
useful to exclude the name of this VI from the 'source' in "error out". To exclude the name of this
VI, a 1 is entered. In order to exclude other branches of the error source, increment this control
the number of branches to exclude.

error out

status status is TRUE if an error occurred, or FALSE if not. If status is TRUE, code is a
non-zero error code. If status is FALSE, code can be zero or a warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler VIS to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

-

dup VISA session

Block Diagram

Case:No Error

error type (error:T) =+F. .

error code (-1301

VISA session ~ ~ ~ l d u p VISA session

66

I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I

Case: Error

2.6.5 List of SubVls

2.7 Register Module.vi

This VI registers the module that calls it and returns the module's name for future references. Any module
that needs to receive messages must first register or else it will not be capable of receiving messages.
Registration causes the framework to create a private message queue for the module.

If there is an incoming error, this VI will not register the module. It will only propagate the error information
to error out.

2.7.1 Connector Pane

- Module Name

error in (no error) error out

2.7.2 Front Panel

67

2.7.3 Controls and Indicators

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

I Module Name. Name of the module that was registered.

E error out The error out cluster passes error or warning information out of a VI to be used by other
VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

68

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.7.4 Block Diagram

Case: No Error

Module Name

1 i

error n (no error) z w

1 I

(1) iF Module Name i5 empty,
use caller vi's name.

(2) checkiF framework has
been initialized.

(3) iF initialized, go to (5).
(4) iF m t mitiahzed, call Initialize

Module Manager.
(5) can Module Manager to

request a queue for the
calling module.

(6) return the name of the calling
module and any error informatnn.

..... " . . -. . ..
T g m i & e r r o r wt

Case: True

Case: Error

2.7.5 List of SubVls

MA Definitions.vi
~ ~ t ~ . C:\Controlatron\Development\msg v5.0.6\Msg5060.11b\MA Definitionsvi

bitidis initialize Module Manager.vi
Modrlc

C:\Controlatron\Developmenthsg v5.0.6\Msg5060.Ilb\lnitialize Module Manager.vi

69

2.8

Send Message-Get Response.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.11b\Send Message-Get Response.vi

Set Windows State.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.11b\Set Windows State.vi

windows state.ctl
C:\Controlatron\Development\msg v5.0.6\Msg5060.Ilb\windows state.ct1

MA Definitionsvi

This VI defines fundamental data types used by the Module Architecture (MA) Vis. It is not intended to be
called directly by the user.

2.8.1 Connector Pane

Dck.

2.8.2 Front Panel

2.8.3 Controls and Indicators

Islnitialized?

splash image

FirstModule

cursor

m x

m y

w App1ication:Kind

UnloadMode

70

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.8.4 Block Diagram

2.8.5 List of SubVls

2.9 Initialize Module Manager.vi

Reserved.

2.9.1 Connector Pane

error in (no error) error out

2.9.2 Front Panel

2.9.3 Controls and Indicators

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

w ~ source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

71

, -- :m Error out The error out cluster passes error or warning information out of a VI to be used by other
VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning. E
The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.9.4 Block Diagram

(1) bad and kick mocWe Manager.
(2) wak for Module M a n ~ e r to . .

set global ~s~n i t i i~ ized i
(3) framewak is ready, r e t u n

to c d k r .

Case: Error

72

1 ,., ,. .. . r . .., + , _ , . * . I. . -J

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Case: Bad

Case: Run top level, Running

These cases should never be called!

2.9.5

2.1 0

List of SubVls

MA Definitiomvi
C:\Controlatron\Development\msg v5.0.6\Msg5060.Ilb\MA Definitiomvi

Set Windows State.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060.11b\Set Windows State.vi

~

windows state.ctl
C:\Controlatron\Development\msg v5.0.6\Msg5060.11b\windows state.ctl

Set Windows State.vi

This VI calls the Windows operating system to control the state of the window specified by vi name.

This VI will not execute if there is an incoming error in the error in cluster.

2.1 0.1 Connector Pane

vi name ------I . . . -. . . -
window state (hide)

73

2.10.2 Front Panel

2.10.3 Controls and Indicators

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up-option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 74

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

window state (hide) Specifies how the window is to be shown. Window state can be one of the
following:

HIDE - Hides the window and activates another window.

MAXIMIZE - Maximizes the specified window.

MINIMIZE - Minimizes the specified window and activates the next top-level window in the Z or-
der.

RESTORE - Activates and displays the window. If the window is minimized or maximized, Win-
dows restores it to its original size and position. An application should specify this flag when re-
storing a minimized window.

SHOW - Activates the window and displays it in its current size and position.

SHOWDEFAULT - Sets the state based on the startup information given by the program that
started the application. An application should use this setting to set the initial state of its main win-
dow.

SHOWMAXIMIZED - Activates the window and displays it as a maximized window.

SHOWMINIMIZED - Activates the window and displays it as a minimized window.

SHOWMINNOACTIVE - Displays the window as a minimized window. The active window remains
active.

SHOWNA - Displays the window in its CURRENT state. The active window remains active.

SHOWNOACTIVATE
dow remains active.

- Displays a window in its most recent size and position. The active win-

SHOWNORMAL -
mized, Windows restores it to its original size and position. An application should specify this set-
ting when displaying the window for the first time.

Activates and displays a window. If the window is minimized or maxi-

vi name

error out The error out cluster passes error or warning information out of a VI to be used by other
VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

75

5 r- E source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.10.4 Block Diagram

error

VI name
enw m (no error)

wndaw state (hide)

Case: Default

Case: Default

76

I
I
I
I
I

' out

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Case: 15

Case: 16,17

Case: Error

2.10.5 List of SubVls

Generate Error.vi
C:\Controlatron\Developrnent\msg v5.0.6\Msg5060.Ilb\Generate Error.vi

77

windows state.ctl
~ C:\Controlatron\Developmenthsg v5.0.6\Msg5060.Ilb\windows state.ctl

2.1 1 Windows Sta ted

2.1 1.1 Connector Pane

2.11.2 Front Panel

2.1 1.3 Controls and Indicators

window state (hide) Specifies how the window is to be shown. Window state can be one of the
following:

HIDE - Hides the window and activates another window.

MAXIMIZE - Maximizes the specified window.

MINIMIZE - Minimizes the specified window and activates the next top-level window in the Z or-
der.

RESTORE - Activates and displays the window. If the window is minimized or maximized, Win-
dows restores it to its original size and position. An application should specify this flag when re-
storing a minimized window.

SHOW - Activates the window and displays it in its current size and position.

SHOWDEFAULT - Sets the state based on the startup information given by the program that
started the application. An application should use this setting to set the initial state of its main win-
dow.

SHOWMAXIMIZED -

SHOWMINIMIZED -
Activates the window and displays it as a maximized window.

Activates the window and displays it as a minimized window.

SHOWMINNOACTIVE - Displays the window as a minimized window. The active window rem&,,is
active.

SHOWNA - Displays the window in its CURRENT state. The active window remains active.

SHOWNOACTIVATE
dow remains active.

- Displays a window in its most recent size and position. The active win-

SHOWNORMAL -
mized, Windows restores it to its original size and position. An application should specify this set-
ting when displaying the window for the first time.

Activates and displays a window. If the window is minimized or maxi-

78

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.1 1.4 Block Diagram

2.1 1.5 List of SubVls

2.1 2 Send Message-Get Response.vi

This VI delivers a message to Destination Module and then waits for the module’s response. It will return
control to the calling VI only after it receives the response. However, if the response is not received within
timeout milliseconds, this VI will stop waiting and will return an error. Timeout defaults to infinite millisec-
onds if left unwired.

If this VI times out, error out will show a timeout error. In all other circumstances, error out will reflect the
outcome of the process called. This VI will not execute if there is an error in error in.

2.1 2.1 Connector Pane

Destination Module
event response data

event buFFer error out

2.12.2 Front Panel

2.12.3 Controls and Indicators

error in error in is a cluster that describes the error status before this VI executes. If error in indi-
cates that an error occurred before this VI was called, this VI may choose not to execute its func-
tion, but just pass the error through to its error out cluster. If no error has occurred, then this VI

79

executes normally and sets its own error status in error out. Use the error handler VIS to look up
the error code and to display the corresponding error message. Using error in and error out clus-
ters is a convenient way to check errors and to specify execution order by wiring the error output
from one subVl to the error input of the next.

mi status status is TRUE if an error occurred before this VI was called, or FALSE if not. If
status is TRUE, code is a non-zero error code. If status is FALSE, code can be zero or a
warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler VIS to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

ml

I -a E

timeout Maximum amount of time, expressed in milliseconds, to wait for the message response.
A value of (-1) disables the timeout functionality (i.e., the VI will wait forever).

Destination Module Application module that will receive and handle the specified message.

event String that describes a task or event.

event buffer Data needed to perform the task specified by the event string. -" '

source level (1)

m. error out error out is a cluster that describes the error status after this Vi executes. If an error
occurred before this VI was called, error out is the same as error in. Otherwise, error out shows
the error, if any, that occurred in this VI. Use the error handler VIS to look up the error code and to
display the corresponding error message. Using error in and error out clusters is a convenient
way to check errors and to specify execution order by wiring the error output from one subVl to
the error input of the next.

status status is TRUE if an error occurred, or FALSE if not. If status is TRUE, code is a
non-zero error code. If status is FALSE, code can be zero or a warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler VIS to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

response data Data generated in response to the synchronous message.

80

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.12.4 Block Diagram

€ -.=.-.. -.

Case: True

Case: Error

81

2.12.5 List of SubVls

Reurn
b f f r C K

Queue

Syaem

2.1 3

Return Reference Manager.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060.lib\Return Reference Manager.vi

Queue Manager.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.11b\Queue Manager.vi

log system event.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060.11b\log system event.vi

wait on gevent.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.Ilb\wait on gevent.vi

Generate Error.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.Ilb\Generate Error.vi

Return Reference Manager.vi

Reserved.

2.1 3.1 Connector Pane
owner ___..I

Reason gevent

error out error in (no error)

2.13.2 Front Panel

2.1 3.3 Controls and Indicators

mi Reason

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

82

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

owner

KLX El__ _"_ gevent
-

error out The error out cluster passes error or warning information out of a VI to be used by other
VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a-warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

83

2.13.4 Block Diagram

error in (no error)

Reason

owner

Initialize reason:

'4
k 1 3

"Get Return Reference", Default bp"

error

Get Reference reason: Remove Reference reason:
Clear owner and reference lists. (1) lookup owner in

the manager lists. the manager lists.
Create Reference reason: (2) if owner is not on the fist, (2) if owner is not on the list,
(1) look up owner in create new reference don't do anything,

the manager lists. and owner element I
(2) if owner is not on the k, (3) if Owner is on the list, its reference (remove

add specified owner and return it5 reference. owner and reference
new reference to the from the lists).
internal lists. Release Reference reason is obsolete.

(1) lookup owner in

(3) if owner is on the list, destroy

Case: Initialize

84

out

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Case: Create Reference

1

Case: 0

Case: -1

Case: Remove Reference

85

Case: -1

Case: Error

2.13.5 List of SubVls

create gevent.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060.Ilb\create gevent.vi

destroy gevent.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060.Ilb\destroy gevent.vi

2.1 4 create gevent.vi

Creates a new gevent and returns a refnum that you can use when calling other gevent VIS.

This VI will not work if error in specifies an error condition.

Connector Pane
gevent

error out error in (no error)

86

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.14.1 Front Panel

2.1 4.2 Controls and Indicators
SIT"-- = error in (no error) The error in cluster can accept error information wired from VIS previously

called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

- source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

-I

- gevent type
-- - E' error out The error out cluster passes error or warning information out of a VI to be used by other

VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

87

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.1 4.3 Block Diagram

error in

88

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.14.4 List of SubVls

jLibrarian.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060. Ilb\jLibrarian.vi

2.1 5 jLibrarian.vi

This VI contains the CIN that does all the real work on VI libraries.

2.15.1 Connector Pane

I
‘I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 89

7 source path
destination Dath ___wF

operation
File idormation in File information out

error in error out
file list P , , . ; ~

2.15.2 Front Panel

2.1 5.3 Controls and Indicators

file information in Information about a file. The creation date, mod date, and palette attributes
apply to files in VI libraries. The type and creator apply to files that are not in VI libraries. The last
modification date applies to directories. The size and LV version can not be changed.

creation date This is the date and time the file was created, expressed as seconds since
January 1,1904. This number can be converted to a string using the Get Date/Time
String function in the Time & Dialog submenu. The creation date may be read or

90

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

changed only for files in a VI library.

last mod date This is the date and time when the file was last modified, expressed as
seconds since January 1,1904. This number can be converted to a string using the Get
Datenime String function. The last modification date may be read for all files but it may
only be changed for files in a VI library.

type This is the type of the file, for example:
LVlN : VI
LVCC : custom control
LVAR : VI library
The type of a file in a VI library may not be changed.

creator This is the creator of the file, for example:
LabVIEW: LBWV
The creator of a file in a VI library may not be changed.

LV version This is the version of LabVlEW in which the file was last saved. Use the 132
To LV Version VI to convert it to a LabVlEW version cluster and the LV Version To String
VI to convert it to a string. The version may only be read (not changed) and only for files
in a VI library.

size Size of the uncompressed file. The size may be read but not changed.

top level TRUE if the file will be marked as a top-level VI in a VI library. This item may be
read and changed only for files in a VI library.

i- -=P- a error in Error encountered before entering this VI. If there was no error, this VI will execute.
Otherwise, it will just pass the error value through.

status status is TRUE if an error occurred before this VI was called, or FALSE if not. If
status is TRUE, code is a non-zero error code. If status is FALSE, code can be zero or a
warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler VIS to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

-- a
operation This is the operation to perform on the file or VI library at source path.

source path The path to the file or VI library to operate on.

destination path If the operation is move or copy, this is the destination for the new file.

file information out Information about a file. The palette information and version apply only to
files in VI libraries. The creation date, mod date, and size apply to directories. For files not in VI
libraries, the creation date, type, and creator are not valid on all platforms.

p] creation date This is the date and time the file was created, expressed as seconds since
January 1,1904. This number can be converted to a string using the Get Datemime
String function in the Time & Dialog submenu. The creation date may be read or

91

changed only for files in a VI library.

last mod date This is the date and time when the file was last modified, expressed as
seconds since January 1,1904. This number can be converted to a string using the Get
Dateflime String function. The last modification date may be read for all files but it may
only be changed for files in a VI library.

type This is the type of the file, for example:
LVlN : VI
LVCC : custom control
LVAR : VI library
The type of a file in a VI library may not be changed.

creator This is the creator of the file, for example:
LabVIEW: LBVW
The creator of a file in a VI library may not be changed.

LV version This is the version of LabVlEW in which the file was last saved. Use the 132
To LV Version VI to convert it to a LabVlEW version cluster and the LV Version To String
Vi to convert it to a string. The version may only be read (not changed) and only for files
in a VI library.

size Size of the uncompressed file. The size may be read but not changed.

top level TRUE if the file is marked as a top-level VI in a VI library. This item may be
read and changed only for files in a VI library.

error out If the status of error in is TRUE, this is a copy of error in. Otherwise, this is the first er-
ror encountered while executing this VI.

status status is TRUE if an error occurred, or FALSE if not. If status is TRUE, code is a
non-zero error code. If status is FALSE, code can be zero or a warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler VIS to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

-
Y

i
[*!

file list Information about each file in a VI library or directory.
I

file list Information about each file in a VI library or directory.

name Name of the file.

create date This is the date and time the file was created, expressed as seconds
since January 1, 1904. This number can be converted to a string using the Get
Daterrime String function in the Time & Dialog submenu. The creation date may
be read or changed only for files in a VI library.

=

mod date This is the date and time when the file was last modified, expressed as
seconds since January 1,1904. This number can be converted to a string using
the Get Daterrime String function. The last modification date may be read for all

92

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
1
I
1
I
I
I
I
I
I
I
I
I
I
I

files but it may only be changed for files in a VI library.

mj type This is the type of the file, for example:
LVIN : VI
LVCC : custom control
LVAR : VI library
The type of a file in a VI library may not be changed.

creator This is the creator of the file, for example:
LabVlEW: LBVW
The creator of a file in a VI library may not be changed.

LV version This is the version of LabVlEW in which the file was last saved. Use
the 132 To LV Version VI to convert it to a LabVlEW version cluster and the LV
Version To String VI to convert it to a string. The version may only be read (not
changed) and only for files in a VI library.

?-

i s

2.15.4 List of SubVls

Librarian File Info 1n.ctl
C:Wrogram FilesWational Instruments\LabVIEW 6\vi.lib\Utility\libraryn.llb\Librarian File Info In.ct1

Librarian File Info 0ut.ctl
info 171 C:\Program Files\National Instruments\LabVIEW 6\vi.lib\Utility\libraryn.Ilb\Librarian File Info 0ut.ctl

Librarian File List.ct1
C:\Program Files\National Instruments\LabVIEW 6\vi.lib\Utility\libraryn.llb\Librarian File List.ct1

2.16 Librarian File Info h c t l

Information about a file. The creation date, mod date, and palette attributes apply to files in VI libraries.
The type and creator apply to files that are not in VI libraries. The last modification date applies to directo-
ries. The size and LV version can not be changed.

2.1 6.1 Connector Pane

file
fnfo

93

2.16.2 Front Panel

2.16.3 Controls and Indicators
I---"-%-< a file information Information about a file. The creation date, mod date, and palette attributes ap-

ply to files in VI libraries. The type and creator apply to files that are not in VI libraries. The last
modification date applies to directories. The size and LV version can not be changed.

creation date This is the date and time the file was created, expressed as seconds since
January 1,1904. This number can be converted to a string using the Get Daterime
String function in the Time & Dialog submenu. The creation date may be read or
changed only for files in a VI library.

last mod date This is the date and time when the file was last modified, expressed as
seconds since January 1, 1904. This number can be converted to a string using the Get
DateKime String function. The last modification date may be read for all files but it may
only be changed for files in a VI library.

type This is the type of the file, for example:
LVlN : VI
LVCC : custom control
LVAR : VI library
The type of a file in a VI library may not be changed.

creator This is the creator of the file, for example:
LabVIEW: LBWV
The creator of a file in a VI library may not be changed.

LV version This is the version of LabVlEW in which the file was last saved. Use the 132
To LV Version VI to convert it to a LabVlEW version cluster and the LV Version To String
VI to convert it to a string. The version may only be read (not changed) and only for files
in a VI library.

size Size of the uncompressed file. The size may be read but not changed.

top level TRUE if the file will be marked as a top-level VI in a VI library. This item may be
read and changed only for files in a VI library.

94

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~I

2.16.4 List of SubVls

2.17 Librarian File Info 0ut.ctl

Information about a file. The palette information and version apply only to files in VI libraries. The creation
date, mod date, and size apply to directories. For files not in VI libraries, the creation date, type, and
creator are not valid on all platforms.

2.17.1 Connector Pane

file
info

2.17.2 Front Panel

2.1 7.3 Controls and Indicators
, -777- file information Information about a file. The palette information and version apply only to files in

VI libraries. The creation date, mod date, and size apply to directories. For files not in VI librar-
ies, the creation date, type, and creator are not valid on all platforms.

creation date This is the date and time the file was created, expressed as seconds since
January 1,1904. This number can be converted to a string using the Get Daterrime
String function in the Time & Dialog submenu. The creation date may be read or
changed only for files in a VI library.

last mod date This is the date and time when the file was last modified, expressed as
seconds since January 1,1904. This number can be converted to a string using the Get
Daterrime String function. The last modification date may be read for all files but it may
only be changed for files in a VI library.

type This is the type of the file, for example:
LVlN : VI
LVCC : custom control
LVAR : VI library
The type of a file in a VI library may not be changed.

creator This is the creator of the file, for example:
LabVIEW: L B W
The creator of a file in a VI library may not be changed.

95

LV version This is the version of LabVlEW in which the file was last saved. Use the 132
To LV Version VI to convert it to a LabVlEW version cluster and the LV Version To String
VI to convert it to a string. The version may only be read (not changed) and only for files
in a VI library.

size Size of the uncompressed file. The size may be read but not changed.

top level TRUE if the file is marked as a top-level VI in a VI library. This item may be
read and changed only for files in a VI library.

2.17.4 List of SubVls

2.18 Librarian File List.ctl

2.18.1 Connector Pane

file U list

2.18.2 Front Panel

2.1 8.3 Controls and Indicators

file list information about each file in a VI library or directory.

1
file list Information about each file in a VI library or directory.

name Name of the file.

create date This is the date and time the file was created, expressed as seconds
since January 1,1904. This number can be converted to a string using the Get
DateKime String function in the Time & Dialog submenu. The creation date may
be read or changed only for files in a VI library.

mod date This is the date and time when the file was last modified, expressed as
seconds since January 1,1904. This number can be converted to a string using

96

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

the Get DateiTime String function. The last modification date may be read for all
files but it may only be changed for files in a VI library.

type This is the type of the file, for example:
LVlN : VI
LVCC : custom control
LVAR : VI library
The type of a file in a VI library may not be changed.

creator This is the creator of the file, for example:
LabVIEW: L B W
The creator of a file in a VI library may not be changed.

LV version This is the version of LabVlEW in which the file was last saved. Use
the 132 To LV Version VI to convert it to a LabVlEW version cluster and the LV
Version To String VI to convert it to a string. The version may only be read (not
changed) and only for files in a VI library.

2.18.4 List of SubVls

2.1 9 Destroy gevent.vi

Destroys the specified gevent. Any wait on gevent vi that is currently waiting on this gevent will wake up
immediately.

This VI will execute regardless of the state described by error in.

2.1 9.1 Connector Pane

gevent

error in (no error) error out

I
I
I
I
I 97

2.19.2 Front Panel

2.1 9.3 Controls and Indicators

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

98

I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
II

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

VI Refnum

occur

error out The error out cluster passes error or warning information out of a VI to be used by other
VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.1 9.4 Block Diagram

error in (no error) error out

99

2.19.5 List of SubVls

2.20 Wait on gevent.vi

Waits for the specified gevent vi to become signaled. Timeout can be used to limit the time to wait for the
event. Timeout defaults to waiting forever.

This VI will not work if error in specifies an error condition.

2.20.1 Connector Pane

gevent
timeout (-1)

error in (no error)
L e r r o r out

2.20.2 Front Panel

2.20.3 Controls and Indicators
w-- ‘5 I *y gevent

100

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

timeout (-1) ms timeout specifies how many milliseconds the function waits for a notification to
arrive.

refnum

VI Refnum

occur

error out The error out cluster passes error or warning information out of a VI to be used by other
VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

101

-
--% gevent -
lm timed out timed out returns TRUE if no notification arrived before the function timed out or if an

error occurred.

response notification contains the last notification sent to the notifier.

2.20.4 Block Diagram

error in

I
I
I
I
I
I
I
I
I
I

102

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.20.5 List of SubVls

2.21 Get Message.vi

This VI retrieves a message from the private queue of the calling module. If there is an incoming error,
this vi will NOT retrieve the message, but will propagate the error information to error out.

To receive messages, a module has to be registered by calling the Register Module.vi prior to sending it
any messages.

2.21.1 Connector Pane

source P

event
event buffer
error out error m (no error)

2.21.2 Front Panel

2.21.3 Controls and Indicators
cslrssq E error in (no error) The error in cluster can accept error information wired from VIS previously

called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

103

-
~322 - event String that describes a task or event.

c__ event buffer Data needed to perform the task specified by the event string.

error out The error out cluster passes error or warning information out of a VI to be used by other
VIS.

1-7

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning. I

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

r-i
source Data needed to perform the task specified by the event string.

2.21.4 Block Diagram

(I) h k u p calhg module's
queue reference.

(2) check whether queue
reference is valid.

(5) iF not vahd, log the event
and generate an error.

(6) if reference K vahd, get
message from the queue.

enor W-I (no error) error ' out

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.21.5 List of SubVls

syam

2.22

Queue Manager.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.Ilb\Queue Manager.vi

log system event.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.llbUog system event.vi

Generate Error.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060.Ilb\Generate Error.vi

Send Message.vi

This VI adds a message to the private queue of the module specified by Destination Module. If Destina-
tion Module is not wired, the VI will send the message to the module it is running in. If there is an incom-
ing error, this vi will NOT send the message, but will propagate the error information to error out.

To receive messages (whether from itself or other modules), a module has to be registered by calling the
Register Module.vi prior to sending it any messages.

105

2.22.1 Connector Pane

2.22.2 Front Panel

2.22.3 Controls and Indicators

Destination Module Application module that will receive and handle the specified message.

event String that describes a task or event.

event buffer Data needed to perform the task specified by the event string.

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source level (1)

106

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- - EZ3 error out The error out cluster passes error or warning information out of a VI to be used by other
VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.22.4 Block Diagram

(0) if &st module 6 empty,
use callerk madule.

(1) lockup d e s t b t m module's
queue reference.

(2) calculete message's source.
(3) checkwhether reference is

V b d .
(4) f not vaikl, log the event

(dertmatlon module is not
registered or not runhg).

(5) if reference is valid, add
message to queue.

error n (no enor)

I

error wt

1 07

2.22.5 List of SubVls

Queue Manager.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060.Ilb\Queue Manager.vi

log system event.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.Ilb\log system event.vi

p] Generate Error.vi
C:\Controlatron\Developrnenthsg v5.0.6\Msg5060.11b\Generate Error.vi

2.23 CIC Set Interlock Setup Change.vi

2.23.1 Connector Pane

error in (no error) - error out

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 108

I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I

2.23.2 Front Panel

2.23.3 Controls and Indicators

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed. -

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

JP----c - --EL error out The error out cluster passes error or warning information out of a VI to be used by other
VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.
I

109

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.23.4 Block Diagram

error in (no error) error out

2.23.5 List of SubVls

FJ Send Message.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.11b\Send Message.vi

2.24 CIC Query Interlock State.vi
Sends the command to read and check the interlock status.

2.24.1 Connector Pane

error in (no error) error out

2.24.2 Front Panel

2.24.3 Controls and Indicators

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 110

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

E error out The error out cluster passes error or warning information out of a VI to be used by other
VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning. &
The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.24.4 Block Diagram

error out

2.24.5 List of SubVls

Send Message.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.Ilb\Send Message.vi

2.25 CAS Set Interlock State.vi

2.25.1 Connector Pane

Interlock State

error in error out

111

2.25.2 Front Panel

2.25.3 Controls and Indicators
cr--Y7 ' - error in error in is a cluster that describes the error status before this VI executes. If error in indi-

cates that an error occurred before this VI was called, this VI may choose not to execute its func-
tion, but just pass the error through to its error out cluster. If no error has occurred, then this VI
executes normally and sets its own error status in error out. Use the error handler VIS to look up
the error code and to display the corresponding error message. Using error in and error out clus-
ters is a convenient way to check errors and to specify execution order by wiring the error output
from one subVl to the error input of the next.

status status is TRUE if an error occurred before this VI was called, or FALSE if not. If
status is TRUE, code is a non-zero error code. If status is FALSE, code can be zero or a
warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler VIS to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

--

Interlock State

-- E error out error out is a cluster that describes the error status after this VI executes. If an error
occurred before this VI was called, error out is the same as error in. Otherwise, error out shows
the error, if any, that occurred in this VI. Use the error handler VIS to look up the error code and to
display the corresponding error message. Using error in and error out clusters is a convenient
way to check errors and to specify execution order by wiring the error output from one subVl to
the error input of the next.

status status is TRUE if an error occurred, or FALSE if not. If status is TRUE, code is a
non-zero error code. If status is FALSE, code can be zero or a warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler VIS to look up the meaning of this code and to display the corresponding error
message.

1 a source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

112

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.25.4 Block Diagram

=error out

2.25.5 List of SubVls

Send Message.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.Ilb\Send Message.vi

2.26 CCC Set Interlock State.vi

2.26.1 Connector Pane

Interlock State'.

error in error out

2.26.2 Front Panel

2.26.3 Controls and Indicators

error in error in is a cluster that describes the error status before this VI executes. If error in indi-
cates that an error occurred before this VI was called, this VI may choose not to execute its func-
tion, but just pass the error through to its error out cluster. If no error has occurred, then this VI
executes normally and sets its own error status in error out. Use the error handler VIS to look up
the error code and to display the corresponding error message. Using error in and error out clus-
ters is a convenient way to check errors and to specify execution order by wiring the error output
from one subVl to the error input of the next.

status status is TRUE if an error occurred before this VI was called, or FALSE if not. If
status is TRUE, code is a non-zero error code. If status is FALSE, code can be zero or a
warning code.

113

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler VIS to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

-- -=-T

m] Interlock State

E error out error out is a cluster that describes the error status after this VI executes. If an error
occurred before this VI was called, error out is the same as error in. Otherwise, error out shows
the error, if any, that occurred in this VI. Use the error handler VIS to look up the error code and to
display the corresponding error message. Using error in and error out clusters is a convenient
way to check errors and to specify execution order by wiring the error output from one subVl to
the error input of the next.

status status is TRUE if an error occurred, or FALSE if not. If status is TRUE, code is a
non-zero error code. If status is FALSE, code can be zero or a warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler VIS to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

.---:

2.26.4 Block Diagram

Interlock State

error in error out

2.26.5 List of SubVls

Send Message.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.11b\Send Message.vi

2.27 PCS 01 001A Set Interlock State-vi

2.27.1 Connector Pane

Interlock State

error in error out

114

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.27.2 Front Panel

2.27.3 Controls and Indicators

error in error in is a cluster that describes the error status before this VI executes. If error in indi-
cates that an error occurred before this VI was called, this VI may choose not to execute its func-
tion, but just pass the error through to its error out cluster. If no error has occurred, then this VI
executes normally and sets its own error status in error out. Use the error handler VIS to look up
the error code and to display the corresponding error message. Using error in and error out clus-
ters is a convenient way to check errors and to specify execution order by wiring the error output
from one subVl to the error input of the next.

status status is TRUE if an error occurred before this VI was called, or FALSE if not. If
status is TRUE, code is a non-zero error code. If status is FALSE, code can be zero or a
warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler VIS to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

Interlock State

error out error out is a cluster that describes the error status after this VI executes. If an error
occurred before this VI was called, error out is the same as error in. Otherwise, error out shows
the error, if any, that occurred in this VI. Use the error handler VIS to look up the error code and to
display the corresponding error message. Using error in and error out clusters is a convenient
way to check errors and to specify execution order by wiring the error output from one subVl to
the error input of the next.

status status is TRUE if an error occurred, or FALSE if not. If status is TRUE, code is a
non-zero error code. If status is FALSE, code can be zero or a warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler VIS to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

115

2.27.4 Block Diagram

I
I
I
I
I

2.27.5 List of SubVls

Send Message.vi
ssl C:\Controlatron\Developmenthsg v5.0.6\Msg5060.Ilb\Send Message.vi

2.28 CIC Variables.ctl

2.28.1 Connector Pane

I
I

116

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.28.2 Front Panel

2.28.3 Controls and Indicators

Variables

p j Go

jm Interlock Setup

Channel1

Active

Polarity

Label

Interlock State

Interlock State 1

QueryTimer

System State

117

RemoteMode

2.28.4 List of SubVls

2.29 CIC Channel Setup.ctl

2.29.1 Connector Pane

2.29.2 Front Panel

2.29.3 Controls and Indicators

Channel 1 Collectively, these controls define each interlock channel.

Active Determines if this channel is actively monitored as part of the Interlock System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal read by
the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this channel.

2.29.4 List of SubVls

2.30 CIC DAQ Get Interlock Status.vi

This vi uses Daq DIO calls to read 16 channels of dio data and compares them to the interlock setup.

2.30.1 Connector Pane

Interlock Setup System Interlock State
Interlock States

5 error out error in (no error)
Demo Channel States

118

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.30.2 Front Panel

2.30.3 Controls and Indicators

J[TFfl Demo Channel States

Boolean

Interlock Setup

Channel 1 Collectively, these controls define each interlock channel.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

119

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.
~

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

System Interlock State

Interlock States

Boolean

error out The error out cluster passes error or warning information out of a VI to be used by
other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.30.4 Block Diagram

System InterkkStatc

120

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Demo Channel states

2.30.5 List of SubVls

CIC Channel Setup.ct1
C:\Controlatron\Development\Controlatron Interlock Control System\CIC Channel Setup.ctl

Read from Digital Port_With Error.vi

ror.vi
El C:\Controlatron\Development\Controlatron Physical Drivers\DIO\Read from Digital Port-With Er-

Driver Demo GlobaLvi 11 C:\Controlatron\Development\Controlatron Physical Drivers\Driver Demo GlobaLvi

2.31 Read from Digital Port-With Error.vi

Reads a digital channel that you configure.

2.31.1 Connector Pane

yb rC, . .L . ,,, # - _ -"b I '*C' I - - ,

device
digital channel

error in (no error)
e _ -*-t - ;tl<*y '':!,,-,l:Ia$:uJ

pattern

error out

121

2.31.2 Front Panel

2.31.3 Controls and Indicators

m1 device device is the device number you assigned to the DAQ device during configuration.

digital channel digital channel is the channel name or port number that this VI configures.

port width (16) port width is the total width or the number of lines of the port in bits.

iteration (0:initialize) iteration can be used to optimize operation when you execute this VI in a
loop.

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkrnark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

122

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

pattern pattern is the data the VI reads from the digital channel.

error out The error out cluster passes error or warning information out of a VI to be used by
other VIS.

@

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.
-
IlZQ

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.31.4 Block Diagram

error in (no error)

iteration (0
initialize)

123

2.31.5 List of SubVls

DIO Port Config.vi
C:\Program Files\National Instruments\LabVIEW 6\vi.lib\DAQVADVD.LLB\DIO Port Config.vi

DIO Port Read.vi
C:\Program Files\National Instruments\LabVIEW G\vi.lib\DAQVADVD.LLB\DIO Port Read.vi -"$$p

2.32 DIO Port Config.vi

Establishes a digital channel configuration. You can use the task ID that this VI returns only in digital port
VIS.

2.32.1

2.32.2

2.32.3

Connector Pane

device task ID out
digital channel

pe- t w d t l error out
error in'(no error) -
line direction map

wired OR map

Front Panel

Controls and Indicators

device device is the device number you assigned to the DAQ device during configuration.

digital channel digital channel is the channel name or port number that this VI configures.

port width port width is the total width or the number of lines of the port in bits.

124

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

line direction map line direction map specifies the direction of each line in the port.

error in (no error) The error in cluster can accept error information wired from Vis previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

wired OR map wired OR map specifies whether each line in the output port is tri-state enabled.

task ID out task ID out uniquely identifies the digital group. Use this value as the task ID to refer
to this group in subsequent digital port VIS.

error out The error out cluster passes error or warning information out of a Vi to be used by
other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

I25

2.32.4 Block Diagram

error in (no error)

device
digital channel

port width
line direction map

wired OR map

2.32.5 List of SubVls

task ID out

error out

2.33 DIO Port Read.vi

Reads the digital channel identified by task ID and returns the pattern read in pattern.

126

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.33.1 Connector Pane

task ID task IO out
‘ - 8 2 :t es: pat tern

error in (no error) error out

2.33.2 Front Panel

2.33.3 Controls and Indicators

task ID task ID identifies the group and the I/O operation.

line mask line mask determines which lines this VI reads.

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

jmi

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

m[status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

[]i52_j code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

pattern pattern -- If you use channel names where the channel name refers to a configured digi-
tal port or you do not use channel names, pattern is a bit pattern representing the state of the
lines in the port. If the channel name is a configured line, pattern is 1 or 0.

127

task ID out task ID out uniquely identifies the digital group.

error out The error out cluster passes error or warning information out of a VI to be used by
other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.33.4 Block Diagram

task ID
@Eg-

error

128

-task ID out

-=error out

I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.33.5 List of SubVls

2.34 Driver Demo Global.vi

2.34.1 Connector Pane

2.34.2 Front Panel

129

2.34.3 Controls and Indicators

DemoMode?

VCR Start Count

VCR End Count

total Count

Discriminator

xo

Delta X

Discriminator

Scope 1 Channel Names

String

Scope 2 Channel Names

String

E 7-7, Scope2Data

t(0)

delta t

data

7 & Scope1 Data

130

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.34.4 List of SubVls

2.35 Respond To Message.vi

This VI sends a response to the originator of a response-requested message. You can get the Response
Reference by calling the Get Response Reference.vi and passing it the event buffer of the response-
requested message.

The response sent will include the error information passed in error in. Thus, this VI will send a response
regardless of the error condition. Error out will always reflect the outcome of the response action.

2.35.1 Connector Pane

s c y c $ _u__c

Response Reference
Message Response

error in (no error) error out

2.35.2 Front Panel

2.35.3 Controls and Indicators

Message Response Response to be sent as a result of a response-requested message.

??!? e- Response Reference Reference that identifies the module that requested a response to the
message. This reference must be used to send the response.

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

131

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source Response to be sent as a result of a response-requested message.

error out The error out cluster passes error or warning information out of a VI to be used by other
VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

132

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.35.4 Block Diagram

Response Reference

error in (error out

Message Response

2.35.5 List of SubVls

set gevent.vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.Ilb\set gevent.vi

Generate Error-vi
C:\Controlatron\Developmenthsg v5.0.6\Msg5060.11b\Generate Error.vi

Syaem log system event.vi
C:\Controlatron\Developmenthsg v5.0.6U\nsg506O.Ilb\log system event.vi

2.36 Set gevent.vi

Set the specified gevent. Any wait on gevent vi that is currently waiting on this gevent will stop waiting and
return the specified response.

This VI will not work if error in specifies an error condition.

2.36.1 Connector Pane

gevent
response

error in (no error) error out

133

2.36.2 Front Panel

2.36.3 Controls and Indicators

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

134

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

a

gevent

refnum

VI Refnum

occur

response

error out The error out cluster passes error or warning information out of a VI to be used by other
vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.36.4 Block Diagram

error in (no error) =error out

135

2.36.5 List of SubVls

2.37 Get Response Reference.vi

This VI parses out the data buffer of a response-required message. The data buffer consists of the mes-
sage's data and the message originator's response reference. The module that handles the message
must send a response to the module that sent the original message using the Respond To Message.vi.

This VI will execute regardless of the condition in the incoming error cluster.

2.37.1 Connector Pane

Response Reference

error out
Response-required buffer event's data

error in (no error)

2.37.2 Front Panel

2.37.3 Controls and Indicators

Response-required buffer Event buffer for a response-required message. A message that re-
quires a response sends the response reference included in its event buffer element.

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

136

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

Response Reference Reference that identifies the module that is requesting a response to the
message. This reference must be used to send a response to the message originator.

event's data Data needed to perform the task specified by the message's event.

error out The error out cluster passes error or warning information out of a VI to be used by other
VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

137

2.37.4 Block Diagram
u

0.00
_1_1

ELT Response Reference
Response-required buffer

error in (no error) error out

2.37.5 List of SubVls

2.38 Simple Error Handler.vi

Determines whether an error occurred. It contains a database of error codes and descriptions, from which
it creates a description of the error and optionally displays a dialog box.

2.38.1 Connector Pane

cl’,: <-+ :-- iiJ <”.*..-‘ < c v j error?
code out
source out
error out

L-.--.- message

~ ” ” - ” r- l l *
v SI A J Y 2 1

type of dialog (OK msg: 1)
error in (no error)

2.38.2 Front Panel

138

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.38.3 Controls and Indicators

type of dialog (OK msg:l) type of dialog determines what type of dialog box should be dis-
played, if any. Regardless of its value, the VI outputs error information and a message describing
the error.

error source ('I 'I) error source is an optional string that you can use to describe the source of
error code.

error code (no error:O) error code is a numeric error code.

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code numeric identifies the error or warning. mi
The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

message message describes the error code that occurred, the source of the error, and a de-
scription of the error.

code out code out is the error code indicated by the error in or error code.

source out source out indicates the source of the error.

error? error? indicates if the VI found an error. If this VI finds an error, it sets the parameters in
the error cluster.

error out The error out cluster passes error or warning information out of a VI to be used by
other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

139

code The code numeric identifies the error or warning.

brror code (no error:O)

brror source ''1
hype of dialoa (OK msg: 1)

rror in (no error)

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

& source The source string describes the origin of the error or warning.
=

-1
-out]
tnessage]

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.38.4 Block Diagram

2.38.5 List of SubVls

General Error Handler.vi
C:\Program Files\National Instruments\LabVIEW 6\vi.Iib\UtiIity\error.Ilb\General Error Handler.vi

2.39 CIC File Management.vi

2.39.1 Connector Pane

Setup In setup Out

error in [no error) error out
Write? :

2.39.2 Front Panel

140

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.39.3 Controls and Indicators

error in (no error) The error in cluster can accept error information wired from VIS previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

Setup In

Channel 1 Collectively, these controls define each interlock channel.

mj Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Write?

error out The error out cluster passes error or warning information out of a VI to be used by
other VIS.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

141

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

-

f5$ Setupout

Channel 1 Collectively, these controls define each interlock channel.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

7
tn$.c* -

2.39.4 Block Diagram

142

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.39.5

- *

List of SubVls

CIC Channel Setup.ctl
C:\Controlatron\Development\Controlatron Interlock Control System\CIC Ch nnel S tup.ctl

2.40 Get Screen Size.vi

Gets the size of the screen in pixels.

The LabVlEW Technical Resource newsletter (LTR) originally distributed this VI.
The LTR is a quarterly publication providing technical information to LabVlEW system developers.

For subscription information, contact:
LTR Publishing, Inc.
6060 N. Central Expressway, Suite 502
Dallas, TX 75206
(21 4) 706-0587
FAX (214) 706-0506
E-mail: subscribe@ Itrpub.com
www.ltrpub.com

2.40.1 Connector Pane

width
height

2.40.2 Front Panel

143

http://Itrpub.com
http://www.ltrpub.com

2.40.3 Controls and Indicators

width Width of the screen in pixels.

height Height of the screen in pixels.

2.40.4 Block Diagram

2.40.5 List of SubVls

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 1 4 4

I
I
I
I
I
I
1
I
I
I
I
I
1
I
I
I
I
I
I

Distribution:

6 Primecore Systems, Inc.
Attn: Robert Hertrich (2)

Keith Barrett (2)
Archives (2)

842 1 Osuna Rd. Suite C- 1
Albuquerque, NM 871 1 1

1 MS-0515 R. W. Howe, 2561
1
1
1
5
1
1
2 0899 Technical Library, 9616
1

05 16 D. L. Wallace, 2564
05 16 J. T. Crow, 2564
0516 G. G. Gonzales, 2564
1183 W. P. Noel, 15425
1 183 M. L. Martinez, 15425
9018 Central Technical Files, 8945-1

0612 Review and Approval Desk, 9612
For DOE/OSTI

145

	Abstract
	Contents
	Figures
	1 Controlatron Software Overview
	1.1 Overview
	1.2 Software Specifications
	1.3 System Adminis,:ators
	1.4 Hardware Considerations
	1.5 Configuring the Interlock System
	1.6 Message Manager Architecture Description and Tutorial
	1.7 Overall Architecture of a Message Manager Based Program
	1.8 Remote Message Manager
	1.9 Advantages of a State Machine in General
	1.10 Advantages of the Message Manager
	1.11 Disadvantages of the Message Manager
	1.12 Object Orientation Using the Message Manager
	1.13 Queued State Machine Architecture Description and Tutorial

	2. Controlatron Interlock Control System
	2.1 CIC Top Level.vi
	2.2 Unload Module.vi
	2.3 Queue Manager.vi
	2.4 Log System Event.vii
	2.5 General Error Handler.vi
	2.6 Generate Error.vi
	2.7 Register Module.vi
	2.8 MA Definitionsvi
	2.9 Initialize Module Manager.vi
	2.10 Set Windows State.vi
	2.11 Windows Stated
	2.12 Send Message-Get Response.vi
	2.13 Return Reference Manager.vi
	2.14 create gevent.vi
	2.15 jLibrarian.vi
	2.16 Librarian File Info In.ctl
	2.17 Librarian File Info 0ut.ctl
	2.18 Librarian File List.ctl
	2.19 Destroy gevent.vi
	2.20 Wait on gevent.vi
	2.21 Get Message.vi
	2.22 Send Message.vi
	2.23 CIC Set Interlock Setup Change.vi
	2.24 CIC Query Interlock State.vi
	2.25 CAS Set Interlock State.vi
	2.26 CCC Set Interlock State.vi
	2.27 PCS 01 001A Set Interlock State-vi
	2.28 CIC Variables.ctl
	2.29 CIC Channel Setup.ctl
	2.30 CIC DAQ Get Interlock Status.vi
	2.31 Read from Digital Port-With Error.vi
	2.32 DIO Port Config.vi
	2.33 DIO Port Read.vi
	2.34 Driver Demo Global.vi
	2.35 Respond To Message.vi
	2.36 Set gevent.vi
	2.37 Get Response Reference.vi
	2.38 Simple Error Handler.vi
	2.39 CIC File Management.vi
	2.40 Get Screen Size.vi

	Distribution

